Benha University		Final Term Exam
Faculty of Engineering- Shoubra		Course: Mathematics 1-B
Eng. Mathematics \& Physics Department		Date: June 15, 2019
Preparatory Year (تخلفات)		Duration: 3 hours
The Exam consists of one page Answ	Nostions	tions: 4 Total Mark: 100

Question 1

(a)Find $\mathbf{y}^{`}$:
(i) $y=\tanh x \cdot \sinh x+\sin ^{-1} x$
(ii) $\mathrm{y}^{3}=\tan ^{-1} \mathrm{x} \cdot \sinh ^{-1} \mathrm{x}$
(b)Find the following integrals :
(i) $\int\left(\frac{1}{\sqrt{1+x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}\right) d x$
(ii) $\int\left(\frac{1}{x^{2}+1}+\frac{1}{\sqrt{x^{2}-1}}\right) d x$
(iii) $\int x \ln x d x$
(iv) $\int \tanh ^{-1} \mathrm{xdx}$
(v) $\int \frac{x+3}{x^{2}-x-2} d x$
(vi) $\int \frac{2}{x^{2}+2 x+2} d x$
(vii) $\int \frac{x}{\sqrt{x+1}} d x$
(viii) $\int \sin 2 y \cdot \cos 3 y d y$
(ix) $\int_{0}^{\pi}(\sin z)^{6} d z$

Question 2

(a)Find the arc length of the curve : $y=1+x^{3}, \quad x$ in [1, 2].
(b)Find the area of the region between the curve: $y=x^{2}-2 x, x$-axis, x in $[1,3]$
(c)If the curve $y=\mathrm{e}^{x}, \mathrm{y}$ in $[2,3]$ is rotated about y - axis. Find the surface area S_{y}.
(d)If the region between the curve $y=3^{x}$, x-axis, x in $[1,3]$ is rotated about : x - axis, y -axis. Find the volume of the generated solids V_{x}, V_{y}.

Question 3

(a)Find the equation of circle which intersects the circles $x^{2}+y^{2}+2 x-2 y+1=0$,
(b)Find coordinates of vertex, focus, directrix of $x^{2}-2 x-4 y-15=0$.
(c)Find the value of k such that $2 x^{2}-4 x y+2 \mathrm{y}^{2}+\mathrm{x}+\mathrm{ky}-1=0$ represents pair of straight lines, and find the distance between them.

Question 4

(a)What is the equation of the diameter bisecting the chords having equal slope of $\frac{3}{2}$ of the ellipse $4 x^{2}+9 y^{2}=144 ?$.
(b)Find the distance from the point $(2,1,-2)$ to the line $\frac{x-3}{-2}=\frac{y+4}{3}=\frac{z-1}{2}$.
(c)Find equation of tangent to hyperbola $2 x^{2}-y^{2}+4 x+4 y-10=0$ at $(1,2)$.

$$
x^{2}+y^{2}+4 x-4 y+3=0 \text { orthogonally and its center lies on the line } 3 x-y-2=0
$$

